3.4.8 \(\int (a+b \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec ^2(c+d x) \, dx\) [308]

Optimal. Leaf size=232 \[ -\frac {(a A-2 b B) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {\left (a^2 A+2 A b^2+2 a b B\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}+\frac {a (3 A b+2 a B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}+\frac {a A \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{d} \]

[Out]

-(A*a-2*B*b)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1
/2))*(a+b*cos(d*x+c))^(1/2)/d/((a+b*cos(d*x+c))/(a+b))^(1/2)+(A*a^2+2*A*b^2+2*B*a*b)*(cos(1/2*d*x+1/2*c)^2)^(1
/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/2))*((a+b*cos(d*x+c))/(a+b))^(1/2)/d/
(a+b*cos(d*x+c))^(1/2)+a*(3*A*b+2*B*a)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+
1/2*c),2,2^(1/2)*(b/(a+b))^(1/2))*((a+b*cos(d*x+c))/(a+b))^(1/2)/d/(a+b*cos(d*x+c))^(1/2)+a*A*(a+b*cos(d*x+c))
^(1/2)*tan(d*x+c)/d

________________________________________________________________________________________

Rubi [A]
time = 0.44, antiderivative size = 232, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.273, Rules used = {3068, 3138, 2734, 2732, 3081, 2742, 2740, 2886, 2884} \begin {gather*} \frac {\left (a^2 A+2 a b B+2 A b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}-\frac {(a A-2 b B) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {a (2 a B+3 A b) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}+\frac {a A \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x])*Sec[c + d*x]^2,x]

[Out]

-(((a*A - 2*b*B)*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(d*Sqrt[(a + b*Cos[c + d*x])/
(a + b)])) + ((a^2*A + 2*A*b^2 + 2*a*b*B)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a +
 b)])/(d*Sqrt[a + b*Cos[c + d*x]]) + (a*(3*A*b + 2*a*B)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c +
d*x)/2, (2*b)/(a + b)])/(d*Sqrt[a + b*Cos[c + d*x]]) + (a*A*Sqrt[a + b*Cos[c + d*x]]*Tan[c + d*x])/d

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2886

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/
(c + d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 3068

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-(b*c - a*d))*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1
)*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Dist[1/(d*(n + 1)*(c^2 - d^2)), Int[(a + b*Si
n[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n + 1)*Simp[b*(b*c - a*d)*(B*c - A*d)*(m - 1) + a*d*(a*A*c + b*B*c -
 (A*b + a*B)*d)*(n + 1) + (b*(b*d*(B*c - A*d) + a*(A*c*d + B*(c^2 - 2*d^2)))*(n + 1) - a*(b*c - a*d)*(B*c - A*
d)*(n + 2))*Sin[e + f*x] + b*(d*(A*b*c + a*B*c - a*A*d)*(m + n + 1) - b*B*(c^2*m + d^2*(n + 1)))*Sin[e + f*x]^
2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2
, 0] && GtQ[m, 1] && LtQ[n, -1]

Rule 3081

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3138

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps

\begin {align*} \int (a+b \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec ^2(c+d x) \, dx &=\frac {a A \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{d}+\int \frac {\left (\frac {1}{2} a (3 A b+2 a B)+b (A b+2 a B) \cos (c+d x)-\frac {1}{2} b (a A-2 b B) \cos ^2(c+d x)\right ) \sec (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx\\ &=\frac {a A \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{d}-\frac {\int \frac {\left (-\frac {1}{2} a b (3 A b+2 a B)-\frac {1}{2} b \left (a^2 A+2 A b^2+2 a b B\right ) \cos (c+d x)\right ) \sec (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx}{b}+\frac {1}{2} (-a A+2 b B) \int \sqrt {a+b \cos (c+d x)} \, dx\\ &=\frac {a A \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{d}+\frac {1}{2} (a (3 A b+2 a B)) \int \frac {\sec (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx-\frac {1}{2} \left (-a^2 A-2 A b^2-2 a b B\right ) \int \frac {1}{\sqrt {a+b \cos (c+d x)}} \, dx+\frac {\left ((-a A+2 b B) \sqrt {a+b \cos (c+d x)}\right ) \int \sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}} \, dx}{2 \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\\ &=-\frac {(a A-2 b B) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {a A \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{d}+\frac {\left (a (3 A b+2 a B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}}\right ) \int \frac {\sec (c+d x)}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}} \, dx}{2 \sqrt {a+b \cos (c+d x)}}-\frac {\left (\left (-a^2 A-2 A b^2-2 a b B\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}}\right ) \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}} \, dx}{2 \sqrt {a+b \cos (c+d x)}}\\ &=-\frac {(a A-2 b B) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {\left (a^2 A+2 A b^2+2 a b B\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}+\frac {a (3 A b+2 a B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}+\frac {a A \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 12.64, size = 398, normalized size = 1.72 \begin {gather*} \frac {\frac {8 b (A b+2 a B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{\sqrt {a+b \cos (c+d x)}}+\frac {2 \left (5 a A b+4 a^2 B+2 b^2 B\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{\sqrt {a+b \cos (c+d x)}}+\frac {2 i (-a A+2 b B) \sqrt {-\frac {b (-1+\cos (c+d x))}{a+b}} \sqrt {\frac {b (1+\cos (c+d x))}{-a+b}} \csc (c+d x) \left (-2 a (a-b) E\left (i \sinh ^{-1}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right )|\frac {a+b}{a-b}\right )+b \left (-2 a F\left (i \sinh ^{-1}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right )|\frac {a+b}{a-b}\right )+b \Pi \left (\frac {a+b}{a};i \sinh ^{-1}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right )|\frac {a+b}{a-b}\right )\right )\right )}{a b \sqrt {-\frac {1}{a+b}}}+4 a A \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{4 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x])*Sec[c + d*x]^2,x]

[Out]

((8*b*(A*b + 2*a*B)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/Sqrt[a + b*Cos[c
 + d*x]] + (2*(5*a*A*b + 4*a^2*B + 2*b^2*B)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*b
)/(a + b)])/Sqrt[a + b*Cos[c + d*x]] + ((2*I)*(-(a*A) + 2*b*B)*Sqrt[-((b*(-1 + Cos[c + d*x]))/(a + b))]*Sqrt[(
b*(1 + Cos[c + d*x]))/(-a + b)]*Csc[c + d*x]*(-2*a*(a - b)*EllipticE[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*
Cos[c + d*x]]], (a + b)/(a - b)] + b*(-2*a*EllipticF[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]],
(a + b)/(a - b)] + b*EllipticPi[(a + b)/a, I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a + b)/(a
 - b)])))/(a*b*Sqrt[-(a + b)^(-1)]) + 4*a*A*Sqrt[a + b*Cos[c + d*x]]*Tan[c + d*x])/(4*d)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(1166\) vs. \(2(305)=610\).
time = 0.41, size = 1167, normalized size = 5.03

method result size
default \(\text {Expression too large to display}\) \(1167\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))*sec(d*x+c)^2,x,method=_RETURNVERBOSE)

[Out]

-((2*cos(1/2*d*x+1/2*c)^2*b+a-b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(4*A*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4*a*b+
(-2*A*a^2-2*A*a*b)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*
d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*(A*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^2+2*A*EllipticF(cos(1/2*
d*x+1/2*c),(-2*b/(a-b))^(1/2))*b^2-A*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^2+A*EllipticE(cos(1/2*
d*x+1/2*c),(-2*b/(a-b))^(1/2))*a*b-3*A*EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))*a*b+2*B*EllipticF(c
os(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a*b+2*B*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a*b-2*B*Ellipti
cE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*b^2-2*B*EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))*a^2)*sin
(1/2*d*x+1/2*c)^2+A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticF
(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^2+2*A*b^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c
)^2+(a+b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(
a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^2+A*(sin(1/2*d
*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b
))^(1/2))*a*b-3*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticPi(
cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))*a*b+2*B*a*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*
c)^2+(a+b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))+2*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*
b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a*b-2*B*(sin(
1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b
/(a-b))^(1/2))*b^2-2*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*Ellipt
icPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))*a^2)/(2*cos(1/2*d*x+1/2*c)^2-1)/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)
*sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^2*b+a+b)^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))*sec(d*x+c)^2,x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)*(b*cos(d*x + c) + a)^(3/2)*sec(d*x + c)^2, x)

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))*sec(d*x+c)^2,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))**(3/2)*(A+B*cos(d*x+c))*sec(d*x+c)**2,x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 5007 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))*sec(d*x+c)^2,x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*(b*cos(d*x + c) + a)^(3/2)*sec(d*x + c)^2, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\left (A+B\,\cos \left (c+d\,x\right )\right )\,{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{3/2}}{{\cos \left (c+d\,x\right )}^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + B*cos(c + d*x))*(a + b*cos(c + d*x))^(3/2))/cos(c + d*x)^2,x)

[Out]

int(((A + B*cos(c + d*x))*(a + b*cos(c + d*x))^(3/2))/cos(c + d*x)^2, x)

________________________________________________________________________________________